久久国产精品萌白酱免费_久久久精品日本一区二区三区_久久777国产线看观看精品卜_亚洲精品无码久久久久去q

技術文章

您的位置

首頁 技術文章

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

點擊次數:4559 更新時間:2017-08-04

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

Introduction

Biofilms are microbes attached to a surface. The  microbes form a film on the surface, giving rise to the name biofilm. This Application Note deals specifically  with bacterial biofilms that convert chemicals to  electrical current on electrodes. Because of this   function, we refer to them as electrochemically active biofilms (EABs). Interest in EABs ranges from their function as bioanodes and biocathodes in microbial fuel cells to new types of biosensors as well as novel biosynthesis of sustainable chemicals.

This application note shows results for Geobacter sulfurreducens, an oxygen-intolerant species of bacteria able to grow on  electrodes.1

If you are not familiar with quartz-crystal microbalances, see our Application Note “Basics of a quartz crystal microbalance”.

Experimental Notes

Culturing of G. sulfurreducens biofilms is not discussed in this Application Note. G. sulfurreducens is a non- pathogenic  BSL-1  biological agent.

Unlike typical electrochemical experiments, current  must be collected over several days to give time for the biofilm to grow. Choose an appropriate sampling rate, such as one measurement every five minutes. We show only one day of  growth.

Gamry’s  jacketed  EuroCell™  Electrochemical  Cell  Kit was used as the reactor vessel. An eSorptionProbe (Part No. 971-18) with 10 MHz Au-coated crystals  was  used.  A saturated Ag/AgCl electrode was used as  reference.

All parts of the reactor vessel were sterilized prior to biofilm growth.2  The assembled reactor vessel  was therefore sterile. Biological growth medium was then added. Oxygen was purged from the vessel using a gas mixture  of  20%  CO2   and  80%  N2.  The  electrode potential was then fixed to 0 VAg/AgCl using Gamry’s Framework™ software with the chronoamperometry script. A suspended cell culture of G. sulfurreducens was added and current was  recorded.

Results

Basics of biofilm growth

Figure 1. Photograph of biofilm grown on the 10 MHz Au-coated crystal for the  eSorptionProbe.

Biofilm can be grown on the Au-coated crystal (Figure 1). The pink hue on the Au surface is the biofilm. The biofilm is only found on Au because the electrode is the electron sink for the electrons generated from the  biofilm metabolizing acetate (a source of organic  carbon). In order to survive and grow, the biofilm must have an electron sink. As a result, surfaces such as the plastic coating that do not accept electrons show no biofilm growth.

The biofilm acts as a catalyst for the electrochemical conversion of acetate to carbon dioxide. The half-reaction above is an overall description of what happens in an individual cell in the biofilm. It does not account for carbon assimilation as biomass. The exact path through which electrons follow to reach the electrode surface is complex and not discussed in this Application Note.

For G. sulfurreducens biofilm, the acetate half-reaction is activated at electrode potentials more positive than approximay −0.4 VAg/AgCl. This  measured  value  is  true for most Au and C surfaces. Figure 2 shows the result of fixing the electrode potential to 0 VAg/AgCl in the presence of G. sulfurreducens cells and acetate. Cells that attach to the electrode form the initial biofilm.To survive, the initial biofilm metabolizes acetate and produces electrons.This produces an electron flow and is the cause of the increase in current in Figure 2.

Figure 2. Current output over time of a growing G. sulfurreducens biofilm. The electrode potential was fixed at 0 VAg/AgCl.

As the biofilm grows, current increases. In effect, the current output over time for EABs is a growth curve. Exponential growth can be easily checked by plotting the data in Figure 2 on a semilogarithmic plot (Figure 3). The initial region is the pre-exponential growth phase or lag phase. The linear region is exponential biofilm growth.

Figure 3. Semilogarithmic plot of current output over time. The linear region reflects exponential biofilm growth.

Standard practice is to confirm existence of the biofilm   by using scanning electron microscopy. Figure 4 shows a micrograph of the biofilm after fixation (standard procedure). The flat background is the bare Au surface. The biofilm was purposely removed to show the Au surface and biofilm in the same image.  The micrograph   is a visual indication that biofilm produced the current observed. If the biofilm is distinct like the pink hue in Figure 1, a photograph may be   sufficient.

Figure 4. Scanning electron micrograph of the biofilm on the Au-coated crystal after growth and a standard fixation procedure. After fixation, the biofilm is no longer alive. Single cells and multi-layered cell clusters are visible.

Biofilm voltammetry

During biofilm growth, the chronoamperometry script  can be stopped without damaging the biofilm. This is valuable for a simple voltammetric sweep. Usually cyclic voltammetry is the preferred script because of its simplicity. Figure 5 shows two cyclic voltammograms of    a growing biofilm (replicate) at 44 hours and 49 hours of growth. A catalytic wave is observed with several redox peaks superimposed between −0.33 VAg/AgCl  to  −0.23 VAg/AgCl. As the scan reached positive potentials, the effect of the redox peaks is minimized. In this potential region, limiting current is observed. The height of the catalytic wave increases with biofilm  growth.

 

Figure 5. Cyclic voltammograms of a G. sulfurreducens biofilm during growth. Scan rate was 30 mV/s. (Note that the chronoamperometry scan was stopped in order to run the cyclic voltammetry script.)

QCM frequency shift

Cell attachment and biofilm growth can be monitored in real-time using Gamry’s electrochemical quartz-crystal microbalance (eQCM). Using the Gamry Resonator™ software, both series frequency-shift (dFseries) and current can be recorded simultaneously. Figure 6 shows dFseries and Reduced Q (secondary y-axis) during   biofilm growth. This was recorded simultaneously with the current shown in Figure 2. The graphs are separated for clarity.

Figure 6. dFseries and Reduced Q over time decreasing in response to biofilm growth on the QCM. These data were taken simultaneously with the current data from Figure 2.

During the time it took the biofilm to reach a current output  of  40  µA  in  Figure  2,  dFseries  reached  −1250 Hz. Usually, for rigid films, dFseries can be converted to mass using the Sauerbrey Equation. However, the decrease in Reduced Q from 1500 to 1000 indicates a significant decrease in the rigidity of the biofilm. As a reference, a −1800 Hz dFseries shift during copper plating onto the QCM results in a minimal decrease in Reduced Q from 1280 to 1240. The important point is that it is typically incorrect to use the Sauerbrey  Equation to convert dFseries to mass for a biofilm, because of the biofilm’s viscous nature.

For most rigid film depositions using the eQCM, a plot of dFseries vs charge 一elds a straight line (for example, copper plating). In the case of G. sulfurreducens biofilm, this is not true.2 The reason is that charge passed does  not determine how much biofilm has grown on the electrode surface. For example, it is possible to have the total charge passed at the electrode increase with time without biofilm growth. Current passed over time is  more relevant for G. sulfurreducens biofilm because current is a proxy for biofilm growth. Figure 7 confirms this expectation and shows a linear correlation between dFseries and current.

Figure 7. dFseries vs. current (linear fit in   red).

Conclusions

This application note introduces electrochemically active biofilms to researchers outside of the field, and shows how the eQCM can be integrated into basic electrochemical techniques. It may also be useful to high school, undergraduate, or new graduate students who want to learn more about the techniques used to study electrochemically active biofilms. QCMs have a variety of uses in addition to monitoring biofilm growth:

•Chemical and biological sensors

•Electropolymerization

•Li+  intercalation

•Corrosion studies

•Electrodeposition

Gamry Instruments would like to acknowledge Dr.Jerome T. Babauta and Professor Haluk Beyenal of the Biofilms Research Group at Washington State University for the generation of these data.

Application Note Rev. 1.0 1/11/2016 Ó Copyright 2016 Gamry Instruments, Inc.

美國Gamry電化學關鍵詞:多通道電化學工作站,電化學工作站價格,石英晶體微天平,電化學工作站廠家,電化學工作站品牌
版權所有 總訪問量:422065 地址:上海市楊浦區逸仙路25號同濟晶度310室 郵編:200437
聯系人:客服 郵箱:jqiu@gamry.com
GoogleSitemap 技術支持:化工儀器網 管理登陸 滬ICP備15019588號-2
久久国产精品萌白酱免费_久久久精品日本一区二区三区_久久777国产线看观看精品卜_亚洲精品无码久久久久去q
<li id="08ioq"><dl id="08ioq"></dl></li><rt id="08ioq"><acronym id="08ioq"></acronym></rt>
  • <button id="08ioq"></button>
  • <rt id="08ioq"><acronym id="08ioq"></acronym></rt>
    <code id="08ioq"><tr id="08ioq"></tr></code>
  • 日韩av网站在线观看| 日韩影院免费视频| 国产精品亚洲专一区二区三区 | 久久久久久麻豆| 免费在线观看一区二区三区| 韩国三级在线看| 精品视频1区2区3区| 亚洲视频小说图片| 男人操女人的视频网站| 国产偷国产偷精品高清尤物| 久久99国产精品免费网站| 加勒比一区二区| 欧美大片在线观看一区二区| 日韩国产精品久久久| 亚洲av成人精品一区二区三区| 欧美三级蜜桃2在线观看| 亚洲综合网站在线观看| 亚洲AV无码久久精品国产一区| 91久久精品午夜一区二区| 亚洲欧美激情小说另类| 99久久国产免费看| 欧美午夜理伦三级在线观看| 亚洲综合在线五月| 欧美xxxxx少妇| 91精品国产色综合久久久蜜香臀| 五月激情六月综合| 四虎影成人精品a片| 久久中文字幕电影| 国产精品中文字幕一区二区三区| 污污视频网站在线免费观看| 亚洲国产精品激情在线观看 | 欧美三区在线观看| 洋洋成人永久网站入口| 久久人妻少妇嫩草av蜜桃| 制服视频三区第一页精品| 秋霞影院一区二区| 亚洲av无码国产精品麻豆天美| 久久这里只精品最新地址| 国产精一品亚洲二区在线视频| 一区二区三区影视| 亚洲免费在线观看| 亚洲精品乱码久久久久久蜜桃图片| 日韩欧美久久一区| 国产精品资源站在线| 日本精品免费观看高清观看| 亚洲一线二线三线视频| 成年人在线观看av| 国产免费久久精品| 少妇欧美激情一区二区三区| 欧美一区二区三区四区高清 | 日韩美女啊v在线免费观看| 男插女视频网站| 欧美岛国在线观看| 成人免费视频免费观看| 欧美日韩三级一区二区| 久久99国产精品尤物| 色哟哟一区二区三区| 婷婷成人激情在线网| 国产传媒在线看| 一个色在线综合| 无码人妻丰满熟妇啪啪欧美| 国产精品日日摸夜夜摸av| 久草免费资源站| 久久久一区二区三区捆绑**| 成人精品一区二区三区四区| 欧美精品第1页| 国产精品99久久久久久久女警| 在线观看免费一区| 久色婷婷小香蕉久久| 一本大道久久a久久综合婷婷| 日本不卡视频一二三区| 久久国产精品露脸对白| 欧美午夜精品一区二区| 久久天堂av综合合色蜜桃网| 中文字幕人妻无码系列第三区| 精品少妇一区二区三区免费观看 | 日韩va欧美va亚洲va久久| 亚洲人与黑人屁股眼交| 图片区小说区国产精品视频| h色网站在线观看| 日本欧美一区二区在线观看| 美女福利视频在线观看| 男女男精品网站| 欧洲国内综合视频| 国产美女娇喘av呻吟久久| 欧美日韩精品免费| 国产91精品精华液一区二区三区 | 91九色蝌蚪porny| 国产精品日韩成人| 国产色视频一区二区三区qq号| 亚洲美女电影在线| 亚洲不卡的av| 亚洲成av人片在线| 国产精品精品软件男同| 男女男精品视频网| 欧美久久一二区| 不卡免费追剧大全电视剧网站| 精品国精品国产| 亚洲一二三四五| 1000部国产精品成人观看| 一区二区三区久久久久| 五月婷婷综合网| 欧美日韩一卡二卡| 国产欧美视频在线观看| 又大又长粗又爽又黄少妇视频| 国产精品久久777777| 一区二区三区在线观看免费视频| 日韩精品视频网站| 欧美日韩精品欧美日韩精品| 99国产精品国产精品久久| 欧美韩国日本综合| 午夜影院黄色片| 久久66热偷产精品| 欧美电视剧在线观看完整版| 欧产日产国产精品98| 亚洲综合色噜噜狠狠| 色成人在线视频| av一本久道久久综合久久鬼色| 亚洲国产成人自拍| 亚洲一区电影在线观看| 精品一区二区三区av| 精品久久一区二区| 性久久久久久久久久| 日本午夜精品一区二区三区电影 | 精品国产一区在线| 亚洲v中文字幕| 欧美放荡的少妇| 色哟哟视频在线| 午夜精品一区二区三区三上悠亚| 欧美日韩精品一区二区三区四区| 下面一进一出好爽视频| 一区二区三区在线播放| 在线观看成人免费视频| 99久久99久久精品国产片果冻| 亚洲婷婷国产精品电影人久久| 私库av在线播放| 9色porny自拍视频一区二区| 亚洲视频电影在线| 在线观看视频一区二区欧美日韩| 91网站在线播放| 亚洲一区中文在线| 欧美一区二区观看视频| 一出一进一爽一粗一大视频| 日本一道高清亚洲日美韩| 国产成人无码一区二区在线观看 | 亚洲一区和二区| 五月天丁香久久| 精品国产网站在线观看| 欧美另类z0zx974| 国产激情视频一区二区三区欧美| 国产亚洲成年网址在线观看| 懂色av蜜臀av粉嫩av永久| 成人一区二区三区视频| 亚洲乱码中文字幕综合| 在线播放视频一区| xxxxx在线观看| 国产超碰在线一区| 一区二区三区中文字幕精品精品| 欧美日韩在线播放三区四区| 日韩免费高清一区二区| 久久aⅴ国产欧美74aaa| 欧美激情资源网| 欧洲视频一区二区| 国产精品久久无码| 国产一区二区成人久久免费影院| 日本一区二区三区高清不卡| 一本一道综合狠狠老| 美国黄色一级视频| 韩国视频一区二区| 亚洲熟女毛茸茸| 不卡一卡二卡三乱码免费网站| 一区二区成人在线视频| 日韩免费一区二区三区在线播放| 手机免费观看av| 91免费视频网| 免费观看一级欧美片| 国产精品丝袜在线| 欧美在线免费播放| 亚洲免费av在线| 91成人免费网站| 黄色片视频免费观看| 国产.精品.日韩.另类.中文.在线.播放| 亚洲免费在线播放| 精品久久一区二区| 色综合久久久久网| 欧美 日本 国产| 成人性生交大片免费看中文| 亚洲国产一区视频| 中文字幕免费一区| 欧美精品一卡两卡| 中文字幕乱码av| 韩国三级hd两男一女| 国产精品中文欧美| 日日夜夜精品免费视频| 国产精品麻豆久久久| 日韩一级精品视频在线观看| 中文字幕手机在线观看| 免费a级黄色片| 91麻豆国产福利精品| 狠狠色丁香久久婷婷综|